An integration of Euler's pentagonal partition

نویسنده

  • Giuseppe Scollo
چکیده

A recurrent formula is presented, for the enumeration of the compositions of positive integers as sums over multisets of positive integers, that closely resembles Euler’s recurrence based on the pentagonal numbers, but where the coefficients result from a discrete integration of Euler’s coefficients. Both a bijective proof and one based on generating functions show the equivalence of the subject recurrences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 10 05 4 v 2 [ m at h . H O ] 1 7 A ug 2 00 6 EULER AND THE PENTAGONAL NUMBER THEOREM

In this paper we give the history of Leonhard Euler's work on the pentagonal number theorem, and his applications of the pentagonal number theorem to the divisor function, partition function and divergent series. We have attempted to give an exhaustive review of all of Euler's correspondence and publications about the pentagonal number theorem and his applications of it. Comprehensus: In hoc di...

متن کامل

Franklin ’ s argument proves an identity of Zagier Robin Chapman

Recently Zagier proved a remarkable q-series identity. We show that this identity can also be proved by modifying Franklin's classical proof of Euler's pentagonal number theorem.

متن کامل

The truncated pentagonal number theorem

A new expansion is given for partial sums of Euler’s pentagonal number series. As a corollary we derive an infinite family of inequalities for the partition function, p(n).

متن کامل

Multiple extensions of a finite Euler's pentagonal number theorem and the Lucas formulas

X iv :0 70 7. 43 28 v1 [ m at h. C O ] 3 0 Ju l 2 00 7 Multiple extensions of a finite Euler’s pentagonal number theorem and the Lucas formulas Victor J. W. Guo1 and Jiang Zeng2 Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China [email protected], http://math.ecnu.edu.cn/~jwguo 2 Université de Lyon; Université Lyon 1; Institut Camille Jorda...

متن کامل

Interpreting the Truncated Pentagonal Number Theorem using Partition Pairs

In 2012 Andrews and Merca gave a new expansion for partial sums of Euler’s pentagonal number series and expressed k−1 ∑ j=0 (−1)(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) = (−1)Mk(n) where Mk(n) is the number of partitions of n where k is the least integer that does not occur as a part and there are more parts greater than k than there are less than k. We will show that Mk(n) = Ck(n) where Ck(n)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1009.3645  شماره 

صفحات  -

تاریخ انتشار 2010